High-Resolution NMR Spectroscopy of Quadrupolar Nuclei in Solids: Satellite-Transition MAS with Self-Compensation for Magic-Angle Misset

Sharon E. Ashbrook and Stephen Wimperis*
School of Chemistry, University of Exeter, Exeter EX4 4QD, United Kingdom

Received March 14, 2002

Several methods are available for obtaining high-resolution NMR spectra of half-integer spin quadrupolar nuclei, such as ${ }^{11} \mathrm{~B},{ }^{23} \mathrm{Na}$ $(I=3 / 2)$ and ${ }^{17} \mathrm{O},{ }^{27} \mathrm{Al}(I=5 / 2)$, in powdered solids. ${ }^{1-3}$ Satellitetransition magic-angle spinning (STMAS) ${ }^{3}$ uses only conventional magic-angle spinning (MAS) hardware and, it has been claimed, ${ }^{4}$ improves significantly upon the signal-to-noise ratio obtained with the widely adopted multiple-quantum MAS (MQMAS) experiment. ${ }^{2}$ The STMAS technique, however, requires that the sample rotation axis be set to the magic angle $\left(\cos ^{-1}(1 / \sqrt{ } 3)=54.736^{\circ}\right)$ with respect to the magnetic field B_{0} with an accuracy of better than $\pm 0.004^{\circ},{ }^{3,4}$ and this stringent requirement has severely limited the use of the method. Here, we propose a novel version of STMAS that selfcompensates for magic-angle missets of up to $\pm 1.0^{\circ}$ and yet retains a sensitivity similar to that of MQMAS.

Under MAS, central transition ($m_{\mathrm{I}}=-1 / 2 \leftrightarrow m_{\mathrm{I}}=+1 / 2$) NMR spectra of half-integer spin quadrupolar nuclei remain broadened by a second-order quadrupolar interaction. ${ }^{5}$ In a reference frame rotating at the Larmor frequency v_{0}, the frequency of an observable $m_{\mathrm{I}}= \pm(q-1) \leftrightarrow m_{\mathrm{I}}= \pm q$ transition (with $q=1 / 2,3 / 2, \ldots ., I$) can be written for a rapidly spinning sample as the sum of two terms arising from the first- and second-order quadrupolar interactions, respectively:
$v_{ \pm(q-1) \rightarrow \pm q}^{(1)}= \pm(2 q-1) v_{\mathrm{Q}}^{\mathrm{PAS}} d_{0,0}^{2}(\chi) d_{0,0}^{2}(\beta)$

$$
\begin{array}{r}
v_{ \pm(q-1) \rightarrow \pm q}^{(2)}=\frac{\left(v_{\mathrm{Q}}^{\mathrm{PAS}}\right)^{2}}{v_{0}}\left\{A^{0}(I, q)+A^{2}(I, q) d_{0,0}^{2}(\chi) d_{0,0}^{2}(\beta)+\right. \tag{1a}\\
\left.A^{4}(I, q) d_{0,0}^{4}(\chi) d_{0,0}^{4}(\beta)\right\}
\end{array}
$$

Here, χ is the angle between the spinning axis and B_{0}, β is the orientation of the quadrupole tensor (for simplicity, axial symmetry is assumed) with respect to the spinning axis, the coefficients $A^{l}(I$, q) are derived from perturbation theory, ${ }^{2,3,6}$ and the quadrupole parameter, $v_{\mathrm{Q}}^{\mathrm{PAS}}$, is given by $3 e^{2} q Q /\{4 I(2 I-1) h\}$. Spinning at the magic angle, the rank $l=2$ rotation matrix element, $d^{2}{ }_{0,0}(\chi=$ 54.736°), is zero, and the first-order quadrupolar splitting is removed from all transitions in which it occurs. However, the anisotropic second-order shift survives because the $l=4$ element, $d^{4}{ }_{0,0}(\chi=$ 54.736°), is nonzero. In a powder, there is a spherical distribution of β angles, and the result is a MAS spectrum with a central transition (CT) that has a rank $l=4$ broadening proportional to $A^{4}(I, 1 / 2)\left(v_{\mathrm{Q}}^{\mathrm{PAS}}\right)^{2} / v_{0}$ and an isotropic quadrupolar shift equal to $A^{0}(I$, $1 / 2)\left(v_{\mathrm{Q}}^{\mathrm{PAS}}\right)^{2} / v_{0}$.

The pulse sequence for a shifted-echo ${ }^{7}$ two-dimensional STMAS experiment ${ }^{4}$ is shown in Figure 1a. This technique removes the first- and second-order quadrupolar broadening (i) by using MAS to suppress the first-order splitting and the rank $l=2$ component of the second-order interaction and (ii) by correlating the two $q=$

[^0]

Figure 1. Pulse sequences and coherence pathways for (a) STMAS and (b) STMAS with self-compensation for magic-angle misset (SCAM). In (b), a 100 -step phase cycle was used: first pulse, 0°; second pulse, $0^{\circ}, 72^{\circ}$, $144^{\circ}, 216^{\circ}, 288^{\circ}$; third pulse, $5\left(0^{\circ}\right), 5\left(72^{\circ}\right), 5\left(144^{\circ}\right), 5\left(216^{\circ}\right), 5\left(288^{\circ}\right.$); fourth pulse, $25\left(0^{\circ}\right), 25\left(90^{\circ}\right), 25\left(180^{\circ}\right), 25\left(270^{\circ}\right)$; receiver, $25\left(0^{\circ}\right), 25\left(180^{\circ}\right)$.

Figure 2. ${ }^{87} \mathrm{Rb}\left(v_{0}=130.9 \mathrm{MHz}\right) \mathrm{NMR}$ spectra of RbNO_{3}. (a) STMAS spectrum at the magic angle. The three pulse durations were $1.7 \mu \mathrm{~s}, 1.5 \mu \mathrm{~s}$ ($\nu_{1}=\left|\gamma \mathrm{B}_{1}\right| \approx 150 \mathrm{kHz}$), and, for the final reduced-power pulse, $30 \mu \mathrm{~s}$. (b) STMAS spectrum with the spinning angle misset by $\sim 0.07^{\circ}$. (c) SCAMSTMAS spectrum at the magic angle. (d) SCAM-STMAS spectrum with the spinning angle misset by $\sim 0.07^{\circ}$. The additional pulse durations of (c) $1.0 \mu \mathrm{~s}$ and (d) $2.0 \mu \mathrm{~s}$ were found by experimental optimization. The MAS rate, ν_{R}, was 20 kHz .
$3 / 2$ satellite transitions (usually, although $q=5 / 2,7 / 2$, and $9 / 2$ transitions have also been used ${ }^{4}$) in the t_{1} period with the $q=1 / 2$ central transition in the t_{2} period such that an echo forms when $t_{2} / t_{1}=A^{4}(I, 3 / 2) / A^{4}(I, 1 / 2)$, refocusing the $l=4$ second-order broadening. As desired, the method retains resolution due to isotropic (rank $l=0$) shifts. Figure 2 a shows the ${ }^{87} \mathrm{Rb}(I=3 / 2)$ STMAS spectrum of RbNO_{3}. The three crystallographically inequivalent Rb sites appear as three "ridge" line shapes (two lie very close together) with gradients equal to $A^{4}(3 / 2,3 / 2) / A^{4}(3 / 2,1 / 2)$ $=-8 / 9$. In addition to these desired $\mathrm{ST} \rightarrow \mathrm{CT}$ ridges, an uninformative "diagonal" peak also appears along a gradient of +1
due to $\mathrm{CT} \rightarrow \mathrm{CT}$ coherence transfer. A high-resolution or "isotropic" spectrum can be obtained by projecting the two-dimensional spectrum onto an axis orthogonal to the $A^{4}(3 / 2,3 / 2) / A^{4}(3 / 2,1 / 2)$ gradient, as shown in Figure 3a.

The STMAS experiment requires that the spinning angle χ be set to the magic angle with high accuracy. ${ }^{3,4}$ If χ deviates from this, then the first-order quadrupolar splitting is reintroduced. For example, the two $q=3 / 2$ satellites, $m_{\mathrm{I}}= \pm 1 / 2 \leftrightarrow m_{\mathrm{I}}= \pm^{3} / 2$, are split by $4 v_{\mathrm{Q}}^{\mathrm{PAS}} d^{2}{ }_{0,0}(\chi) d^{2_{0,0}}(\beta)$, and, because a typical value of $v_{\mathrm{Q}}^{\mathrm{PAS}}$ is perhaps 250 kHz , the angle χ must not deviate from 54.736° by more than about $\pm 0.004^{\circ}$ if the splitting is not to exceed 100 Hz . In contrast, the second-order quadrupolar shifts of the central and satellite transitions are unaffected by a small deviation of χ from the magic angle. For example, if $\nu_{\mathrm{Q}}^{\mathrm{PAS}}=250 \mathrm{kHz}$ and $\nu_{0}=100$ MHz , then $\left(v_{\mathrm{Q}}^{\mathrm{PAS}}\right)^{2} / v_{0}$ is only 625 Hz , and even a $\pm 1.0^{\circ}$ deviation of χ changes the second-order shifts by only a few tens of Hz . Figure $2 b$ shows the ${ }^{87} \mathrm{Rb}$ STMAS spectrum of RbNO_{3} recorded with the angle χ misset by an amount estimated to be 0.07°. A first-order splitting has been reintroduced into the satellite-transition dimension $\left(\delta_{1}\right)$, and the resolution has been spoiled.

The pulse sequence for a version of STMAS that is selfcompensated for angle misset (SCAM) is shown in Figure 1b. As in Figure 1a, this is a shifted-echo experiment and yields absorptive line shapes. The novel feature of the new experiment is a pulse in the middle of the t_{1} period that transfers coherence between the two $q=3 / 2$ satellite transitions. The $m_{\mathrm{I}}=+1 / 2 \leftrightarrow m_{\mathrm{I}}=+3 / 2$ and $m_{\mathrm{I}}=-1 / 2 \leftrightarrow m_{\mathrm{I}}=-3 / 2$ transitions (ST^{+}and ST^{-}) have first-order quadrupolar frequencies that are equal in magnitude but opposite in sign (see eq 1a); hence, by inducing $\mathrm{ST}^{ \pm} \rightarrow \mathrm{ST}^{\mp}$ transfer, the unwanted first-order splitting is refocused. Crucially, the new pulse is phase-cycled so as to maintain the sign of the coherence order, p, and avoid premature refocusing of the second-order shift.

Figure 2c shows the ${ }^{87} \mathrm{Rb}$ SCAM-STMAS spectrum of RbNO_{3} recorded with the spinning angle χ set accurately to the magic angle as in Figure 2a. The spectrum is similar to that in Figure 2a, except that additional ridges appear midway between the $\mathrm{CT} \rightarrow \mathrm{CT} \rightarrow$ CT diagonal peak and the desired $\mathrm{ST}^{ \pm} \rightarrow \mathrm{ST}^{\mp} \rightarrow \mathrm{CT}$ and $\mathrm{ST}^{ \pm} \rightarrow$ $\mathrm{ST}^{ \pm} \rightarrow \mathrm{CT}$ ridges due to unwanted $\mathrm{CT} \rightarrow \mathrm{ST}^{ \pm} \rightarrow \mathrm{CT}$ and $\mathrm{ST}^{ \pm} \rightarrow$ CT \rightarrow CT transfer. Figure 2d shows the ${ }^{87} \mathrm{Rb}$ SCAM-STMAS spectrum when χ is misset by $\sim 0.07^{\circ}$ as in Figure 2b. The unwanted $\mathrm{CT} \rightarrow \mathrm{ST}^{ \pm} \rightarrow \mathrm{CT}$ and $\mathrm{ST}^{ \pm} \rightarrow \mathrm{CT} \rightarrow \mathrm{CT}$ ridges are now split by the residual first-order quadrupolar interaction in δ_{1} and are barely visible at the contour levels used. Similarly, the $\mathrm{ST}^{ \pm} \rightarrow \mathrm{ST}^{ \pm} \rightarrow$ CT components of the desired ridges are now split and not visible. However, three narrow ridge line shapes with gradients of $-8 / 9$ remain prominent, arising from $\mathrm{ST}^{ \pm} \rightarrow \mathrm{ST}^{\mp} \rightarrow \mathrm{CT}$ pathways that refocus the first-order splitting.

The isotropic projection of a ${ }^{87} \mathrm{Rb}$ SCAM-STMAS spectrum, shown in Figure 3b, clearly reveals the three Rb sites in RbNO_{3} but also shows reduced sensitivity as compared with STMAS performed with χ set accurately (Figure 3a). However, the sensitivity is approximately the same as that in the isotropic ${ }^{87} \mathrm{Rb}$ MQMAS projection (also performed with χ misset by $\sim 0.07^{\circ}$) shown in Figure 3c. Results broadly similar to these have also been obtained on RbNO_{3} at a lower MAS rate (10 kHz) and on $\mathrm{Rb}_{2} \mathrm{SO}_{4}$ and, using ${ }^{27} \mathrm{Al}(I=5 / 2) \mathrm{NMR}$, on $\mathrm{Al}(\mathrm{acac})_{3}$ and andalusite, $\mathrm{Al}_{2} \mathrm{SiO}_{5}$.

Figure 4a shows the ${ }^{27} \mathrm{Al}$ "split- $t_{1}{ }^{\prime \prime}{ }^{4}$ STMAS ($q=3 / 2$) spectrum of kyanite, $\mathrm{Al}_{2} \mathrm{SiO}_{5}$, recorded with the spinning angle χ set as accurately as possible using our normal procedure. ${ }^{4}$ There are four Al sites in kyanite, two of which have large $\nu_{\mathrm{Q}}^{\mathrm{PAS}}$ values of about 750 kHz . These two long ridge line shapes at $\delta_{1} \approx 25 \mathrm{ppm}$ are not resolved in this spectrum, however, and have a distinctive "hairpin" appearance arising from residual first-order (or, possibly, third-

Figure 3. Absolute-intensity ${ }^{87} \mathrm{Rb}$ isotropic projections of (a) on-angle STMAS, (b) off-angle SCAM-STMAS, and (c) off-angle MQMAS (splitt_{1} shifted-echo, $\left.v_{1} \approx 150 \mathrm{kHz}, \nu_{\mathrm{R}}=20 \mathrm{kHz}\right) \mathrm{NMR}$ spectra of RbNO_{3}. In (b), an experimentally optimized composite pulse, $(1.8 \mu \mathrm{~s})_{x}(1.75 \mu \mathrm{~s})_{-x}$, was used in place of the simple SCAM pulse to enhance the sensitivity by $\sim 20 \%$. In (c), an experimentally optimized fast-amplitude-modulation (FAM) conversion pulse, ${ }^{8}\left\{(0.8 \mu \mathrm{~s})_{x}-\tau-(0.8 \mu \mathrm{~s})_{-x}-\tau-\right\}_{3}$ with $\tau=0.8 \mu \mathrm{~s}$, was used to enhance the MQMAS sensitivity by $\sim 80 \%$. Each experiment was performed in 120 min with a maximum t_{1} period of 24 ms .

Figure 4. ${ }^{27} \mathrm{Al}\left(\nu_{0}=104.3 \mathrm{MHz}\right) \mathrm{NMR}$ spectra of $\mathrm{Al}_{2} \mathrm{SiO}_{5}\left(\nu_{1} \approx 100\right.$ $\mathrm{kHz}, v_{\mathrm{R}}=30 \mathrm{kHz}$). (a) Split- t_{1} STMAS $(q=3 / 2)$ spectrum with the spinning angle set as accurately as possible using our normal procedure. (b) Split- t_{1} SCAM-STMAS $(q=3 / 2)$ spectrum with the angle misset by $\sim 0.09^{\circ}$. (c) and (d) Normalized-intensity isotropic projections of (a) and (b).
order) splittings in δ_{1} (χ would need to be misset by less than $\pm 0.001^{\circ}$ for the first-order splitting to be less than 100 Hz). In contrast, all four ridge line shapes are resolved in the split- t_{1} SCAMSTMAS spectrum in Figure 4 b , recorded with χ misset by $\sim 0.09^{\circ}$; the two long ridges are now very narrow in δ_{1} and precisely parallel to δ_{2}. This increased resolution is confirmed in the isotropic projections in Figure 4c and d.

In summary, the SCAM-STMAS NMR experiment yields superior isotropic resolution without accurate adjustment of the spinning angle (indeed, χ must be misset if the unwanted ridges in Figure 2c are to be avoided) and appears to have a sensitivity that is comparable with MQMAS. Many SCAM experiments similar to that in Figure 1b can be devised, including ones that utilize multiple-quantum satellite transitions.

Acknowledgment. We thank Professor M. H. Levitt (Southampton, U.K.) for suggesting this line of investigation to us and EPSRC for support (grant GR/N07622).

References

(1) (a) Samoson, A.; Lippmaa, E.; Pines, A. Mol. Phys. 1988, 65, 1013. (b) Llor, A.; Virlet, J. Chem. Phys. Lett. 1988, 152, 248.
(2) Frydman, L.; Harwood, J. S. J. Am. Chem. Soc. 1995, 117, 5367.
(3) (a) Gan, Z. J. Am. Chem. Soc. 2000, 122, 3242. (b) Gan, Z. J. Chem. Phys. 2001, 114, 10845.
(4) (a) Pike, K. J.; Ashbrook, S. E.; Wimperis, S. Chem. Phys. Lett. 2001, 345, 400. (b) Ashbrook, S. E.; Wimperis, S. J. Magn. Reson. 2002, 156, 269.
(5) Ganapathy, S.; Schramm, S.; Oldfield, E. J. Chem. Phys. 1982, 77, 4360.
(6) Amoureux, J. P. Solid State Nucl. Magn. Reson. 1993, 2, 83.
(7) Grandinetti, P. J.; Baltisberger, J. H.; Llor, A.; Lee, Y. K.; Werner, U.; Eastman, M. A.; Pines, A. J. Magn. Reson., Ser. A 1993, 103, 72.
(8) Madhu, P. K.; Goldburt, A.; Frydman, L.; Vega, S. Chem. Phys. Lett. 1999, 307, 41.
JA0203869

[^0]: * To whom correspondence should be addressed. Fax: +44-1392-263434. E-mail: s.wimperis@exeter.ac.uk.

